viernes, 9 de abril de 2010

Acontecimientos importantes

Últimos descubrimientos:

Nuevo descubrimiento físico explora por qué hay más materia que antimateria en el Universo
El trabajo revela que la investigación en los procesos de la desintegración de los mesones B implica que existe más materia que antimateria en el Universo.
Los últimos descubrimientos, que involucran significativas contribuciones de los físicos de la Universidad de Melbourne, han sido publicados hace poco en la prestigiosa revista Nature.
"Los mesones B son una nueva frontera de investigación y han demostrado ser muy influyentes en la formación de un nuevo pensamiento en el campo de la física de partículas", señala el profesor asociado Martin Sevior de la Escuela en Física de la Universidad de Melbourne, quien lidera esta investigación.
Sevior señala que los mesones B contienen quarks pesados que sólo pueden ser creados en aceleradores de partículas de alta energía. Su desintegración aporta un poderoso medio para probar las condiciones exóticas que se presentaron en la primera fracción de segundo después del Big Bang que creó el Universo.
"Nuestro Universo está hecho casi por completo de materia. Pero si aplicamos esta idea, esto no concuerda con las ideas actuales de cómo interactúan la masa y la energía. De acuerdo a estas teorías no debería haber suficiente masa para permitir la formación de estrellas y, por ende, de la vida."
"En nuestro modelo estándar de física de partículas, la materia y la antimateria son casi idénticas. En base a cómo se dice que se mezclaron en el Universo primitivo deberían haberse aniquilado una a otra, dejando muy poco para formar las estrellas y las galaxias. El modelo no está ni cerca de explicar la diferencia entre materia y antimateria tal como la vemos en la naturaleza. El desequilibrio es un billón [ 1012 ] de veces más grande que lo que predicen los modelos."
Sevior dice que esta inconsistencia entre el modelo y el Universo implica que debe haber un nuevo principio de la física aún por descubrir.
"Junto con nuestros colegas del experimento Belle, con sede en KEK, en Japón, hemos podido producir un vasto número de mesones B con el más intenso colisionador de partículas del mundo".
"Luego observamos la forma en que se desintegraban los mesones B, opuesta a como se desintegraban los mesones anti-B. Encontramos que hay pequeñas diferencias en estos procesos. Si bien la mayoría de nuestras mediciones confirma las predicciones del Modelo Estándar de Física de Partículas, este nuevo resultado podría estar en desacuerdo".
"Es un descubrimiento emocionante debido a que nuestro trabajo proporciona pistas de cómo un nuevo principio de la física llevó al Universo a tener capacidad de dar soporte a la vida".


Fuente: blackholes.radiouniverso.org

Agujeros negros


Un agujero negro u hoyo negro es una región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que genera un campo gravitatorio tal que ninguna partícula material, ni siquiera los fotones de luz, puede escapar de dicha región.
La curvatura del espacio-tiempo o «gravedad de un agujero negro» provoca una singularidad envuelta por una superficie cerrada, llamada horizonte de sucesos. Esto es debido a la gran cantidad de energía del objeto celeste. El horizonte de sucesos separa la región del agujero negro del resto del Universo y es la superficie límite del espacio a partir de la cual ninguna partícula puede salir, incluyendo la luz. Dicha curvatura es estudiada por la relatividad general, la que predijo la existencia de los agujeros negros y fue su primer indicio. En los años 70, Hawking, Ellis y Penrose demostraron varios teoremas importantes sobre la ocurrencia y geometría de los agujeros negros.1Previamente, en 1963, Roy Kerr había demostrado que en un espacio-tiempo de cuatro dimensiones todos los agujeros negros debían tener una geometría cuasi-esférica determinada por tres parámetros: su masa M, su carga eléctrica total e y su momento angular L.
Se cree que en el centro de la mayoría de las galaxias, entre ellas la Vía Láctea, hay agujeros negros super masivos. La existencia de agujeros negros está apoyada en observaciones astronómicas, en especial a través de la emisión de rayos X por estrellas binarias y galaxias activas.


Fuente: wikipedia

Un agujero negro es un objeto con una gravedad tan fuerte que nada puede escaparse de él, ni siquiera la luz. La masa del agujero negro está concentrada en un punto de densidad casi infinita, llamado singularidad. En la propia singularidad, la gravedad es de una fuerza casi infinita, por lo que aniquila el espacio-tiempo normal. A medida que aumenta la distancia desde la singularidad, su influencia gravitacional disminuye. A determinada distancia, que depende de la masa de la singularidad, la velocidad que se necesita para escapar del agujero negro es igual a la velocidad de la luz. Esta distancia marca el “horizonte” del agujero negro, que es como su superficie. Todo lo que pasa por el horizonte es atrapado dentro del agujero negro. Hay distintos tipos de agujeros negros, dependiendo de su masa.

Fuente: blackholes.radiouniverso.org

Cuerpos celestes

Cuerpo Celeste: Son todos los objetos extensos que forman parte del Universo, que puede interactuar con otro cuerpo por la ley de gravedad (orbitándolo o siendo orbitado), o bien si no hay fuerzas que influyan sobre él, se mantiene como un cuerpo errante en medio del espacio.

Fuente: Diccionario Babylon

Las estrellas:



En un sentido general, puede afirmarse que una estrella es todo cuerpo celeste que brilla con luz propia. Ahora bien, de un modo más técnico y preciso, podría decirse que se trata de un cúmulo de materia en estado de plasma en un continuo proceso de colapso, en la que interactúan diversas fuerzas que equilibran dicho proceso en un estado hidrostático. El tiempo que tarde en colapsar dicho cúmulo, depende del tiempo en el que las diversas fuerzas dejen de equilibrar la hidrostásis que da forma a la estrella.

Fuente: es.wikipedia.org

Los satélites:



Cuerpos menores del sistema solar que se desplazan alrededor de los planetas. Existen planetas con un numeroso cortejo de satélites como Júpiter y Saturno, planetas con un solo satélite como la Tierra, alrededor de la cual orbita la Luna, y planetas carentes de satélites como Venus. El movimiento de la mayor parte de los satélites conocidos del Sistema Solar alrededor de sus planetas es directo, es decir, de oeste a este y en la misma dirección que giran sus planetas. Solamente ciertos satélites de grandes planetas exteriores giran en sentido inverso, es decir, de este a oeste y en dirección contraria a la de sus planetas; probablemente fueron capturados por los campos gravitatorios de los planetas algún tiempo después de la formación del Sistema Solar. Los planetas: Cuerpo sólido celeste que gira alrededor de una estrella y que se hace visible por la luz que refleja. En particular los que giran alrededor del Sol.

Fuente: diccionario de la REAL ACADEMIA ESPAÑOLA

Los planetas:



Tienen diversos movimientos, por ejemplo rotación y translación: .- Por el de rotación, giran sobre sí mismos alrededor de un eje (determinando los días). .- Por el de translación, describen órbitas alrededor del Sol (determinando los años). Los planetas tienen forma casi esférica, como 1 pelota aplanada por los polos: Los materiales compactos están en el núcleo. Los gases, si los hay, forman una atmosfera sobre la superficie. .- Mercurio, Venus, la Tierra y Marte son planetas pequeños y rocosos, con densidad alta. Tienen un movimiento de rotación lento, pocas lunas (o ninguna) y forma esférica un poco más redonda que los siguientes. .- Júpiter, Saturno, Urano y Neptuno, los gigantes gaseosos, son enormes y ligeros, hechos de gas y hielo. Estos planetas giran deprisa, tienen muchos satélites, anillos y un poco más abultamiento ecuatorial que los anteriores. Los planetas y el Sol se formaron hace unos 4.500 millones de años: En general, los materiales ligeros que no se quedaron en el Sol se alejaron más que los pesados. En la nube de gas y polvo original, que giraba en espirales, había zonas más densas, proyectos de planetas. La gravedad y las colisiones llevaron más materia a estas zonas y el movimiento rotatorio las redondeó Después, los materiales y las fuerzas de cada planeta se fueron reajustando, y todavía lo hacen. Los planetas y todo el Sistema Solar continúan cambiando de aspecto. Sin prisa, pero sin pausa.

Fuente:www.8planetas.com

El nombre en castellano de los planetas del Sistema Solar, con excepción de la Tierra, corresponde al nombre de algunas divinidades de las mitologías romana o griega: Mercurio es el dios romano del comercio; Venus es la diosa romana del amor y de la belleza; Marte es el dios de la guerra; Júpiter es el dios supremo del panteón romano y creador del universo; Saturno es el dios romano de la agricultura; Urano es el dios griego del cielo; Neptuno es el dios romano de los mares. En diferentes culturas los días de la semana provienen de los nombres de los dioses asociados con cada uno de estos astros. Lunes por la Luna, Martes por Marte, Miércoles por Mercurio, Jueves por Júpiter, Viernes por Venus, excepto Sábado por el Sabbath y Domingo por la resurrección de Jesucristo: die domini (día del Señor en latín). En inglés aún se conserva la denominación Saturday (día de Saturno) para el Sábado, y Sunday (día del Sol) para el domingo. Los satélites mayores de los diferentes planetas reciben su nombre de personajes mitológicos, excepto los satélites de Urano, cuyos nombres conmemoran personajes de obras clásicas de teatro. Otros cuerpos menores del Sistema Solar reciben su nombre de diversas fuentes: mitológicas (Plutón, Sedna, Eris, Varuna o Ceres), de sus descubridores (cometas como el Halley) o de códigos alfanuméricos relacionados con su descubrimiento.

Fuente: es.wikipedia.org

Los meteoritos:



La palabra meteorito significa fenómeno del cielo y describe la luz que se produce cuando un fragmento de materia extraterrestre entra a la atmosfera de la Tierra y se desintegra.

Fuente: www.xtec.cat

El meteorito es un meteoroide que alcanza la superficie de un planeta debido a que no se desintegra por completo en su atmósfera. Al entrar en contacto con la atmósfera, la fricción con el aire causa que el meteoroide se caliente, y entonces entra en ignición emitiendo luz y formando un meteoro, bola de fuego o estrella fugaz. Se denominará bólido a aquellos meteoros cuya luminosidad sea superior a la del Planeta Venus.

Las constelaciones

Las estrellas que se pueden observar en una noche clara forman determinadas figuras que llamamos "constelaciones", y que sirven para localizar más fácilmente la posición de los astros. En total, hay 88 agrupaciones de estrellas que aparecen en la esfera celeste y que toman su nombre de figuras religiosas o mitológicas, animales u objetos. Este término también se refiere a áreas delimitadas de la esfera celeste que comprenden los grupos de estrellas con nombre.

Los dibujos de constelaciones más antiguos que se conocen señalan que las constelaciones ya habían sido establecidas el 4000 a.C. Los sumerios le dieron el nombre a la constelación Acuario, en honor a su dios An, que derrama el agua de la inmortalidad sobre la Tierra. Los babilonios ya habían dividido el zodíaco en 12 signos iguales hacia el 450 a.C.

Las actuales constelaciones del hemisferio norte se diferencian poco de las que conocían los caldeos y los antiguos egipcios. Homero y Hesíodo mencionaron las constelaciones y el poeta griego Arato de Soli, dio una descripción en verso de 44 constelaciones en su Phaenomena. Tolomeo, astrónomo y matemático griego, en el Almagesto, describió 48 constelaciones, de las cuales, 47 se siguen conociendo por el mismo nombre.

Muchas otras culturas agruparon las estrellas en constelaciones, aunque no siempre se corresponden con las de Occidente. Sin embargo, algunas constelaciones chinas se parecen a las occidentales, lo que induce a pensar en la posibilidad de un origen común.
A finales del siglo XVI, los primeros exploradores europeos de los mares del Sur trazaron mapas del hemisferio austral. El navegante holandés Pieter Dirckz Keyser, que participó en la exploración de las Indias orientales en 1595 añadió nuevas constelaciones. Más tarde fueron añadidas otras constelaciones del hemisferio sur por el astrónomo alemán Johann Bayer, que publicó el primer atlas celeste extenso.

Muchos otros propusieron nuevas constelaciones, pero los astrónomos acordaron finalmente una lista de 88. No obstante, los límites de las constelaciones siguieron siendo tema de discusión hasta 1930, cuando la Unión Astronómica Internacional fijó dichos límites.

Para designar las aproximadamente 1.300 estrellas brillantes, se utiliza el genitivo del nombre de las constelaciones, precedido por una letra griega; este sistema fue introducido por Johann Bayer. Por ejemplo, a la famosa estrella Algol, en la constelación Perseo, se le llama Beta Persei.

Entre las constelaciones más conocidas se hallan las que se encuentran en el plano de la órbita de la Tierra sobre el fondo de las estrellas fijas. Son las constelaciones del Zodíaco. Además de estas, algunas muy conocidas son Cruz del Sur, visible desde el hemisferio sur, y Osa Mayor, visible desde el hemisferio Norte. Estas y otras constelaciones permiten ubicar la posición de importantes puntos de referencia como, por ejemplo, los polos celestes.

La mayor constelación de la esfera celeste es la de Hydra, que contiene 68 estrellas visibles a simple vista. La Cruz del Sur, por su parte, es la constelación más pequeña.

Fuente: www.astronomía.com

miércoles, 31 de marzo de 2010

Trabajo

Trabajo

el universohttp://static.slidesharecdn.com/swf/ssplayerd.swf?doc=cdocumentsandsettingsinformtica-4escritorioguindeluniverso-100331082927-phpapp02&stripped_title=el-universo-3602912" />http://static.slidesharecdn.com/swf/ssplayerd.swf?doc=cdocumentsandsettingsinformtica-4escritorioguindeluniverso-100331082927-phpapp02&stripped_title=el-universo-3602912" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="477" height="510">
View more documents from el universohttp://static.slidesharecdn.com/swf/ssplayerd.swf?doc=cdocumentsandsettingsinformtica-4escritorioguindeluniverso-100331082927-phpapp02&stripped_title=el-universo-3602912" />http://static.slidesharecdn.com/swf/ssplayerd.swf?doc=cdocumentsandsettingsinformtica-4escritorioguindeluniverso-100331082927-phpapp02&stripped_title=el-universo-3602912" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="477" height="510">
View more documents from

domingo, 7 de marzo de 2010

LAS CONSTELACIONES

Tan sólo 3 galaxias distintas a la nuestra son visibles a simple vista. Tenemos la Galaxia de Andrómeda, visible desde el Hemisferio Norte; la Gran Nube de Magallanes, y la Pequeña Nube de Magallanes, en el Hemisferio Sur celeste. El resto de las galaxias no son visibles al ojo desnudo sin ayuda de instrumentos. Sí que lo son, en cambio, las estrellas que forman parte de la Vía Láctea. Estas estrellas dibujan a menudo en el cielo figuras reconocibles, que han recibido diversos nombres en relación con su aspecto. Estos grupos de estrellas de perfil identificable se conocen con el nombre de constelaciones. Hasta el presente, se han observado 88 constelaciones, algunas de ellas muy extensas, como Hidra o la Osa Mayor, y otras muy pequeñas como Flecha y Triángulo.


Fuente: Enciclopedia del universo

LA VÍA LÁCTEA

La Vía Láctea es nuestra galaxia . Según las observaciones, posee una masa de 1012 masas solares y es de tipo espiral barrada. Con un diámetro medio de unos 100.000 años luz se calcula que contiene unos 200.000 millones de estrellas, entre las cuales se encuentra el Sol. La distancia desde Sol el al centro de la galaxia es de alrededor de 27.700 años luz. A simple vista, se observa como una estela blanquecina de forma elíptica, que se puede distinguir en las noches despejadas. Lo que no se aprecian son sus brazos espirales, en uno de los cuales, el llamado brazo d Orión, está situado nuestro sistema solar, y por tanto la Tierra.

El núcleo central de la galaxia presenta un espesor uniforme en todos sus puntos, salvo en el centro, donde existe un gran abultamiento con un grosor máximo de 16.000 años luz, siendo el grosor medio de unos 6.000 años luz.

Todas las estrellas y la materia interestelar que contiene la Vía Láctea, tanto en el núcleo central como en los brazos, están situadas dentro de un disco de 100.000 años luz de diámetro, que gira lentamente sobre su eje a una velocidad lineal superior a los 216 km/s.

Fuente: wikipedia

IMAGENES DE GALAXIAS



Galaxia espiral barrada



Galaxia espiral

Galaxia elíptica


Galaxia irregular


Fuente: imagenes google

FORMAS DE LAS GALAXIAS

La creciente potencia de los telescopios, que permite observaciones cada vez más detalladas de los distintos elementos del Universo, ha hecho posible una clasificación de las galaxias por su forma. Se han establecido así cuatro tipos distintos: galaxias elípticas, espirales, espirales barradas e irregulares.

Galaxias elípticas

En forma de elipse o de esferoide, se caracterizan por carecer de una estructura interna definida y por presentar muy poca materia interestelar. Se consideran las más antiguas del Universo, ya que sus estrellas son viejas y se encuentran en una fase muy avanzada de su evolución.

Galaxias espirales

Están constituidas por un núcleo central y dos o más brazos en espiral, que parten del núcleo. Éste se halla formado por multitud de estrellas y apenas tiene materia interestelar, mientras que en los brazos abunda la materia interestelar y hay gran cantidad de estrellas jóvenes, que son muy brillantes. Alrededor del 75% de las galaxias del Universo son de este tipo.

Galaxia espiral barrada

Es un subtipo de galaxia espiral, caracterizados por la presencia de una barra central de la que típicamente parten dos brazos espirales. Este tipo de galaxias constituyen una fracción importante del total de galaxias espirales. La Vía Láctea es una galaxia espiral barrada.


Galaxias irregulares

Incluyen una gran diversidad de galaxias, cuyas configuraciones no responden a las tres formas anteriores, aunque tienen en común algunas características, como la de ser casi todas pequeñas y contener un gran porcentaje de materia interestelar. Se calcula que son irregulares alrededor del 5% de las galaxias del Universo.

Fuente: wikipedia

miércoles, 24 de febrero de 2010

LAS GALAXIAS

Las galaxias son acumulaciones enormes de estrellas, gases y polvo.En el Universo hay centenares de miles de millones. Cada galaxia puede estar formada por centenares de miles de millones de estrellas y otros astros.
En el centro de las galaxias es donde se concentran más estrellas.Cada cuerpo de una galaxia se mueve a causa de la atracción de los otros. En general hay, además, un movimiento más amplio que hace que todo junto gire alrededor del centro.

Fuente: http://www.astronomia.com

miércoles, 10 de febrero de 2010

Composición

El Universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10-30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73% de energía oscura, 23% de materia oscura fría y un 4% de átomos. Así, la densidad de los átomos equivaldría a un núcleo de hidrógeno sencillo por cada cuatro metros cúbicos de volumen. La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio.

Se especula con que el neutrino, (una partícula muy abundante en el universo), tenga, aunque mínima, una masa. De comprobarse este hecho, podría significar que la energía y la materia oscura no existen.

Durante las primeras fases del Big Bang, se cree que se formaron las mismas cantidades de materia y antimateria. Materia y antimateria deberían eliminarse mutuamente al entrar en contacto, por lo que la actual existencia de materia (y la ausencia de antimateria) supone una violación de la simetría CP, por lo que puede ser que las partículas y las antipartículas no tengan propiedades exactamente iguales o simétricas., o puede que simplemente las leyes físicas que rigen el universo favorezcan la supervivencia de la materia frente a la antimateria. En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.

Antes de la formación de las primeras estrellas, la composición química del Universo consistía primariamente en hidrógeno (75% de la masa total), con una suma menor de helio-4 (4He) (24% de la masa total) y el resto de otros elementos. Una pequeña porción de estos elementos estaba en la forma del isótopo deuterio (2H), helio-3 (3He) y litio (7Li). Consecuentemente la materia interestelar de las galaxias ha sido enriquecida sin cesar por elementos más pesados. Éstos se han introducido como un resultado de las explosiones de supernovas, los vientos estelares y la expulsión de la cubierta exterior de estrellas desarrolladas.

El Big Bang dejó detrás un flujo de fondo de fotones y neutrinos. La temperatura de la radiación de fondo ha decrecido sin cesar con la expansión del Universo y ahora fundamentalmente consiste en la energía de microondas equivalente a una temperatura de 2,725. La densidad del fondo de neutrinos actual es sobre 150 por centímetro cúbico.


Fuente: wikipedia, página web

Forma

Primero, si el Universo es espacialmente plano se desconoce si las reglas de la grometria euclidiana son válidas a mayor escala (aunque se cree que no es plano el universo, pero no se tiene nada seguro). Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las "oscilaciones acústicas" de las variaciones de temperatura en la radiación de fondo de microondas.

Segundo, se desconoce si el Universo es múltiplemente conexo. El Universo no tiene cotas espaciales de acuerdo al modelo estándar del Big Bang, pero sin embargo debe ser espacialmente finito. Esto se puede comprender utilizando una analogía en dos dimensiones: la superficie de una esfera no tiene límite, pero no tiene un área infinita. Es una superficie de dos dimensiones con curvatura constante en una tercera dimensión.

Si el Universo fuese compacto y sin cotas, sería posible, después de viajar una distancia suficiente, volver al punto de partida. Así, la luz de las estrellas y galaxias podría pasar a través del Universo observable más de una vez. Si el Universo fuese múltiplemente conexo y suficientemente pequeño (y de un tamaño apropiado, tal vez complejo) entonces posiblemente se podría ver una o varias veces alrededor de él en alguna (o todas) direcciones. Aunque esta posibilidad no ha sido descartada, los resultados de las últimas investigaciones de la radiación de fondo de microondas hacen que esto parezca improbable.


Fuente: Wikipedia, pagina web

miércoles, 3 de febrero de 2010

tamaño del universo

Muy poco se conoce sobre el tamaño del Universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito. Un artículo de 2003 dice establecer una cota inferior de 24 gigaparsecs (78.000 millones de años luz) para el tamaño del Universo, pero no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada. Pero hay distintas tesis del tamaño; una de ellas es que hay varios universos, otro es que el universo es infinito
El Universo observable (o visible), que consiste en toda la materia y energía que podía habernos afectado desde el Big Bang dada la limitación de la velocidad de la luz, es ciertamente finito. El Universo visible ronda los 46.500 millones de años luz en todas las direcciones desde la Tierra. Así, el Universo visible se puede considerar como una esfera perfecta con la Tierra en el centro, y un diámetro de unos 93.000 millones de años luz. Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del Universo visible: desde 13.700 hasta 180.000 millones de años luz.
En el Universo las distancias que separan los astros son tan grandes que, si las quisiéramos expresar en metros, tendríamos que utilizar cifras muy grandes. Debido a ello, se utiliza como unidad de longitud el año luz, que corresponde a la distancia que recorre la luz en un año.
Actualmente, el modelo más comúnmente aceptado es el propuesto por Albert Einstein en su relatividad general, en la que propone un universo "finito pero ilimitado", es decir, que a pesar de tener un volumen medible no tiene límites, de forma análoga a la superficie de una esfera, que es medible pero ilimitada. No obstante, el volumen del universo no puede ser calculado, ya que no podemos observar nada más alejado del anteriormente citado límite de observación (esfera de radio de 46.500 millones años luz, teniendo en cuenta los efectos de expansión).

miércoles, 27 de enero de 2010

EL BIG BANG

La teoría de la relatividad general de Einstein, por sí sola, predijo que el espacio-tiempo comenzó en la singularidad del big bang y que iría hacia un final. Justo en el mismo big bang, se piensa que el universo tuvo un tamaño nulo, y por tanto que estuvo infinitamente caliente. Pero, conforme el universo se expandaía, la temperatura de la radiación disminuía. Un segundo después del big bang, la temperatura habría descendido al rededor de diez mil millones de grados. Eso representa unas mil veces la temperatura en el centro del Sol, pero temperaturas tan altas como ésa se alcanzan en las explosiones de las bombas H. En ese momento, el universo habría contenido fundamentalmente fotones, electrones, neutrinos (partículas extremadamente ligeras que son afectadas únicamente por la fuerza débil y por la gravedad) y sus antipartículas, junto con algunos protones y neytrones. A medida que el universo continuava expandiendose y la temperatura descendiendo, el ritmo al que los pares electón/antielectón estaban siendo producidos en las colisiones habría descendido por debajo del ritmo al que estaban siendo destruidos po aniquilación.

Editorial: Crítica.

Título: História del tiempo del big bang a los agujeros negros.

Autor: Stephen W. Hawking.

miércoles, 20 de enero de 2010

el big bang


Es una imagen que muestra el desarrollo del Big Bang.

miércoles, 13 de enero de 2010

El Big Bang:
Se cree que el universo primitivo era una amalgama de partículas cuánticas (quarks, gluones y leptones), extremadamente densa, que se agitaba en todas direcciones a una velocidad próxima a la de la luz. En este instante, las cuatro fuerzas, nuclear fuerte, nuclear débil, gravitatoria y electromagnética, estaban unificadas.
El Big Bang se inició hace 15 ó 20 mil millones de años con una fase de expansión brutal (10 elevado a 28 veces más rápida que la expansión actual), originada por la presión del vacío cuántico. Las cuatro fuerzas se individualizaron; los gluones se unieron a los quarks y a los leptones para formar los hadrones, partículas elementales que participan en las interacciones fuertes (protones, neutrones y piones) Una fraccion de segundo después del Big Bang, la temperatura se redujo. Los leptomes (electrones, positrones y nectrinos) proliferaron: estos toman hoy un ruido cósmico de fondo.

Fuente: La enciclopédia de Anaya


Breve explicación: Entiendo más o menos el principio, habla de unas partículas que estaban en el espacio pero lo del vacio cuántico es lo único que no entiendo, pero lo siguiente si.

Nota: Estoy haciéndolo siguiendo el guión que colgué en el primer trimestre. Voy lento porque no tengo internet en mi casa.


Fuente: Internet.

Información: Es el desarrollo de la teoria del Big Bang.